Blog Archives

An Exterminator-Free Galaxy

Quoting Nick Land, expat Brit philosopher in Shanghai, “The cosmic reality visible to us is characterized by an intense, efficient aversion to the existence of advanced civilizations.” He calls whatever it is that prevents the existence of advanced civilizations “The Great Filter.” Longtime science fiction readers familiar with Gregory Benford’s Galactic Center series or Fred Saberhagen’s Berserker universe will understand what Land means when he dubs the Great Filter “the Exterminators:” Killer robots sent out to destroy advanced civilizations.

But on the bright side, Exterminators probably don’t exist, because if they did, the human race would already be extinct.

You might have heard of Von Neumann probes. A self-replicating interstellar probe journeys to a nearby star, makes copies of itself, and those copies journey to nearby stars. Repeat until you have a probe in every stellar system in the galaxy. Even if the probes’ net velocity is only 1% of the speed of light, they would reach every star system in the galaxy within 10 million years.

Given that the galaxy is about 13.2 billion years old, filling the galaxy with self-replicating probes would take but a moment of astronomical time. Look at it this way: if Earth is typical, and a planet needs to exist for (rounding) 4.2 billion years for intelligent life to develop a civilization capable of launchign a self-replicating probe, then it would take just one alien civilization arising in our galaxy in the last 9 billion years for there to be a probe somewhere in the solar system right now.

Now suppose that one alien civilization built probes with a straightforward mission: destroy other intelligent species while those intelligent species are stuck on their home planet, to ensure that one civilization can exploit all the resources of the galaxy. If true, their killer probes would have destroyed us a long time ago. Maybe even before there was an us.

Since that clearly didn’t happen, we conclude that zero alien civilizations built Exterminators.

Wait, their killer probe might be here, waiting to destroy us
No, because the Exterminator has nothing to gain by waiting. Over three thousand years ago, human beings built plainly artificial objects visible from low earth orbit. A clear signal that a species had evolved tool use and enough social organization to engage in massive engineering projects. Why wait to destroy that species? Maybe it will take four thousand years for that species to build its own Von Neumann probes, but what if it takes them four hundred? Or forty? Don’t take that chance. Destroy them now.

Since ancient Egypt wasn’t wiped out by a hundred-mile-wide asteroid impact, the sun going nova, or a never-ending army of implacable battle robots, “no killer probe” is the safe bet.

What does this mean?
Looks like the Great Filter lies behind us. Whether life is rare, or planets rarely stay habitable for billions of years, or the metabolic expense of intelligence rarely conveys a selective advantage, or tool use is rare, doesn’t matter. We are probably the only intelligent tool-using species in the galaxy. The handful of human beings who will ever get past low earth orbit will be like the Aborigines crossing the Torres Strait or the First Nations pushing south of the Ice Age glaciers, entering a vast, resource-rich realm without competition.

Except with each other, which for science fiction writers is a good thing. Fodder for a million stories….

Speaking of which, I should get back to work. Till next time.

A treasure trove of hard science fiction ideas

While researching a story I’m currently writing about terraforming, I found The Paul Birch Web Archive. If you’re looking for big, hard science fiction ideas, follow the link now and get your mind expanded. Want to speed up Venus’ rotation to give it a day 24 hours long, at the low low price of $20 trillion? Want to build a bridge across the Pacific Ocean or up to low Earth orbit? Want to sail the solar wind and interstellar medium, and reach Alpha Centauri in 400 years? Want to take a one-way faster-than-light trip into the future?

The link again is The Paul Birch Web Archive. Enjoy!

The ALECS Quartet, now available for preorder

I’m pleased to let you know that I have a new science fiction short novel coming out on September 25, 2014. It’s got intrigue, a love story, and an homage to Lawrence Durrell’s tetralogy The Alexandria Quartet, all wrapped up in my distinctive flavor of sf speculation. You can preorder the ebook now or buy the trade paperback at better booksellers on the release date.


 

The ALECS Quartet, by Raymund Eich

alecs-qtt-ebook-cover

He had a month to learn the planet’s secrets – and Juliette’s

His Cover Story
Return to Elard to dismantle his sect’s missionary work to the planet’s natives.

His True Mission
Investigate decades-old mysteries of love and death.

His Objective
Return to Earth with his discovery – if he can.


Electronic edition available for preorder for US$4.99 or equivalent from Amazon, Barnes & Noble, iTunes, Kobo, Smashwords, and other sellers.

Trade paperback edition available for US $10.99 or equivalent from all better booksellers, including Amazon and Barnes & Noble.

Audio edition coming soon.

Find out more at the publisher’s website, cv2books.com.

Novel Acorn: Operation Iago

Quick note: this blog post may look familiar to my mailing list subscribers. It was one of those exclusive, pre-release bonuses my mailing list subscribers received almost three weeks ago, and almost a week before Operation Iago became available.

You can get similar bonus content about my next books by subscribing now. Scroll down on the page to “Signed Paperbacks Giveaway” for a chance to win signed copies of both Take the Shilling and Operation Iago. Mailing list signup gives you your best chance to win!

Even though Operation Iago is my fifth science fiction novel, and the second book in the Confederated Worlds series, I still get a thrill when I swipe through the ebook edition or riffle the pages of the trade paperback and see a story of mine in print.

Part of the thrill for me comes from knowing how the story started life. Writers come up with all sorts of metaphors for the process of writing a novel. Running a marathon. Building a house. Giving birth.

797px-Quercus_englmannii_sillouette-Noah-Elhardt-Wikimedia-CommonsOne way I look at a novel is as an oak tree. A thick trunk, reaching deep into the earth, extending branches into the sky. Words like leaves, thousands of them working together, creating a shady spot for readers to pause and refresh.

670px-Quercus_rotundifolia_acorns_Croatia-Tony-Hisgett-Wikimedia-Commons-CC-by-2Yet large as it is, and long as it may take to grow, the oak tree starts as a single acorn. So too does a novel. An acorn of an idea, dropped on a fertile spot of the subconscious, and watered by new notions about characters, locales, and events, can grow into a novel.

The acorn from which Operation Iago grew

Read the rest of this entry

The Fermi Paradox and the Drake Equation – From Intelligence to High-Tech Civ (f_c)

So far in the series, we’ve gotten a range for N, the number of detectable civilizations in the galaxy, to [5e-7 to 8e-6] * f_c * L. Today’s post will estimate the value of f_c, the fraction of intelligent species that go on to develop a civilization detectable (through electromagnetic transmissions and/or probes travelling at a sizable fraction of lightspeed) across interstellar distances.humanity's first interstellar probe

A common assumption in science fiction is that intelligent life forms will inevitably build high-tech civilizations. Similarly to the typical view of inevitable evolutionary progress toward intelligence which I demolished previously, this common assumption smacks of whig history. Of course progress is a law of nature. It gave rise to the pinnacle of existence: us.

Read the rest of this entry

Economics of Space Settlements, Part I

As a longtime sf fan, one of the toughest realizations I ever came to is that Space settlements will never happen for economic reasons.

In part, the costs of getting to space are too high.  Charles Stross has discussed the costs at great length here.  To get one person to the Moon, bringing along the life support he needs for the trip, using advanced versions of the rocket technology we have today, would cost about US$400,000 as an optimistic estimate.

That’s far too expensive for anything except government boondoggles or multimillionaire’s larks, i.e., the current state of space travel.

Things get worse as go further in the solar system, even keeping in mind Heinlein’s comment that “Earth orbit is halfway to anywhere.”  The cost of travel to Mars or any other place in the solar system would be even higher than $400,000, for at least two reasons: (1) you have to carry the fuel for the return trip, and (2) you have to carry more life support infrastructure for the years of round-trip travel time forced on you by Hohmann transfer orbits.

Interstellar travel?  Alpha Centauri is about 250,000 times further away than Mars.  The energy cost to get a solitary explorer there in less than one lifetime (at 0.1 c, 40 years in transit) is comparable to the yield of all nuclear weapons ever built, or the energy consumption of the entire world for a couple of weeks.  Generation ships are even worse:  the energy savings from their slower speed (call it 0.01c, 400 years in transit) is offset by the mass of hundreds of people and the infrastructure needed to keep them alive and safe for four centuries.  And we haven’t even touched on the individual and social psychology issues these avenues would bring up.  How well would you do living in your car for four decades?

So nevermind settling the solar system; the idea of normal people going into space is so expensive, it’s a non-starter.

About now, a reader might protest, “But what about nanotechnology?  Advanced materials and cheap energy production will lower all those costs dramatically.”

I read Stan Schmidt’s mid-’80s Analog editorials on nanotechnology, and K. Eric Drexler’s Engines of Creation.  Although I think Drexler is intoxicated with his ideas, I completely agree that some of the fruits of nanotechnology–the super-strong, super-light materials and cheap energy referred to above–are entirely possible, and are in fact likely to appear somewhere on Earth in the coming decades.  Yes, those advances will make space elevators and fusion-powered torchships possible.  Yes, nanotechnology would greatly lower the costs of space travel and space settlements.

But.  Nanotechnology would also greatly lower the benefits of space settlement, leaving the prospect as uneconomical as it is today.  More on that point in my next post.